Buku ini sedang dalam tahap tinjauan terbuka. Kami ingin umpan balik Anda untuk membuat buku ini lebih baik bagi. Anda dapat memberikan anotasi pada beberapa teks dengan memilihnya menggunakan kursor dan kemudian klik “Beri Anotasi” pada menu pop-up. Anda juga dapat melihat anotasi orang lain: klik tanda panah di sudut kanan atas halaman

2.3 Contoh Implementasi dengan R

# Memuat library yang diperlukan
library(dplyr)
library(ggplot2)
## Menghasilkan dataset contoh
set.seed(123)
data <- data.frame(
  id = 1:100,
  nilai = c(rnorm(97, mean = 50, sd = 10), 150, -20, 200)  # Menambahkan 3 outlier
)
# Menampilkan data awal
print(head(data))
#>   id    nilai
#> 1  1 44.39524
#> 2  2 47.69823
#> 3  3 65.58708
#> 4  4 50.70508
#> 5  5 51.29288
#> 6  6 67.15065
# Visualisasi data untuk melihat outlier
ggplot(data, aes(x = id, y = nilai)) +
  geom_point() +
  ggtitle("Visualisasi Data Awal") +
  theme_minimal()

# Deteksi Outlier menggunakan Z-Score
data <- data %>%
  mutate(z_score = (nilai - mean(nilai)) / sd(nilai),
         outlier_z = abs(z_score) > 3)
# Menampilkan data dengan Z-Score dan status outlier
print(data)
#>      id     nilai      z_score outlier_z
#> 1     1  44.39524 -0.389888902     FALSE
#> 2     2  47.69823 -0.234391178     FALSE
#> 3     3  65.58708  0.607780249     FALSE
#> 4     4  50.70508 -0.092834318     FALSE
#> 5     5  51.29288 -0.065162186     FALSE
#> 6     6  67.15065  0.681389823     FALSE
#> 7     7  54.60916  0.090961823     FALSE
#> 8     8  37.34939 -0.721593614     FALSE
#> 9     9  43.13147 -0.449384746     FALSE
#> 10   10  45.54338 -0.335836934     FALSE
#> 11   11  62.24082  0.450244821     FALSE
#> 12   12  53.59814  0.043364858     FALSE
#> 13   13  54.00771  0.062646882     FALSE
#> 14   14  51.10683 -0.073921055     FALSE
#> 15   15  44.44159 -0.387707067     FALSE
#> 16   16  67.86913  0.715214486     FALSE
#> 17   17  54.97850  0.108349735     FALSE
#> 18   18  30.33383 -1.051872020     FALSE
#> 19   19  57.01356  0.204155991     FALSE
#> 20   20  45.27209 -0.348608927     FALSE
#> 21   21  39.32176 -0.628738155     FALSE
#> 22   22  47.82025 -0.228646451     FALSE
#> 23   23  39.73996 -0.609050491     FALSE
#> 24   24  42.71109 -0.469175568     FALSE
#> 25   25  43.74961 -0.420284155     FALSE
#> 26   26  33.13307 -0.920089508     FALSE
#> 27   27  58.37787  0.268385027     FALSE
#> 28   28  51.53373 -0.053823273     FALSE
#> 29   29  38.61863 -0.661840209     FALSE
#> 30   30  62.53815  0.464242577     FALSE
#> 31   31  54.26464  0.074742522     FALSE
#> 32   32  47.04929 -0.264941964     FALSE
#> 33   33  58.95126  0.295378894     FALSE
#> 34   34  58.78133  0.287379320     FALSE
#> 35   35  58.21581  0.260755586     FALSE
#> 36   36  56.88640  0.198169721     FALSE
#> 37   37  55.53918  0.134745032     FALSE
#> 38   38  49.38088 -0.155175036     FALSE
#> 39   39  46.94037 -0.270069312     FALSE
#> 40   40  46.19529 -0.305146338     FALSE
#> 41   41  43.05293 -0.453082311     FALSE
#> 42   42  47.92083 -0.223911518     FALSE
#> 43   43  37.34604 -0.721751380     FALSE
#> 44   44  71.68956  0.895072560     FALSE
#> 45   45  62.07962  0.442655944     FALSE
#> 46   46  38.76891 -0.654765163     FALSE
#> 47   47  45.97115 -0.315698320     FALSE
#> 48   48  45.33345 -0.345720196     FALSE
#> 49   49  57.79965  0.241163628     FALSE
#> 50   50  49.16631 -0.165276728     FALSE
#> 51   51  52.53319 -0.006770992     FALSE
#> 52   52  49.71453 -0.139467487     FALSE
#> 53   53  49.57130 -0.146210798     FALSE
#> 54   54  63.68602  0.518282157     FALSE
#> 55   55  47.74229 -0.232316685     FALSE
#> 56   56  65.16471  0.587895586     FALSE
#> 57   57  34.51247 -0.855149894     FALSE
#> 58   58  55.84614  0.149196136     FALSE
#> 59   59  51.23854 -0.067720164     FALSE
#> 60   60  52.15942 -0.024367305     FALSE
#> 61   61  53.79639  0.052698377     FALSE
#> 62   62  44.97677 -0.362512019     FALSE
#> 63   63  46.66793 -0.282895578     FALSE
#> 64   64  39.81425 -0.605553036     FALSE
#> 65   65  39.28209 -0.630605984     FALSE
#> 66   66  53.03529  0.016866925     FALSE
#> 67   67  54.48210  0.084979892     FALSE
#> 68   68  50.53004 -0.101074926     FALSE
#> 69   69  59.22267  0.308156710     FALSE
#> 70   70  70.50085  0.839110354     FALSE
#> 71   71  45.08969 -0.357195838     FALSE
#> 72   72  26.90831 -1.213138474     FALSE
#> 73   73  60.05739  0.347453203     FALSE
#> 74   74  42.90799 -0.459905692     FALSE
#> 75   75  43.11991 -0.449928857     FALSE
#> 76   76  60.25571  0.356790108     FALSE
#> 77   77  47.15227 -0.260093649     FALSE
#> 78   78  37.79282 -0.700717576     FALSE
#> 79   79  51.81303 -0.040674220     FALSE
#> 80   80  48.61109 -0.191415507     FALSE
#> 81   81  50.05764 -0.123314587     FALSE
#> 82   82  53.85280  0.055354008     FALSE
#> 83   83  46.29340 -0.300527531     FALSE
#> 84   84  56.44377  0.177331259     FALSE
#> 85   85  47.79513 -0.229828884     FALSE
#> 86   86  53.31782  0.030168021     FALSE
#> 87   87  60.96839  0.390341480     FALSE
#> 88   88  54.35181  0.078846437     FALSE
#> 89   89  46.74068 -0.279470279     FALSE
#> 90   90  61.48808  0.414807253     FALSE
#> 91   91  59.93504  0.341693368     FALSE
#> 92   92  55.48397  0.132146000     FALSE
#> 93   93  52.38732 -0.013638154     FALSE
#> 94   94  43.72094 -0.421633790     FALSE
#> 95   95  63.60652  0.514539535     FALSE
#> 96   96  43.99740 -0.408618380     FALSE
#> 97   97  71.87333  0.903724094     FALSE
#> 98   98 150.00000  4.581770457      TRUE
#> 99   99 -20.00000 -3.421487344      TRUE
#> 100 100 200.00000  6.935669811      TRUE
# Deteksi Outlier menggunakan IQR
Q1 <- quantile(data$nilai, 0.25)
Q3 <- quantile(data$nilai, 0.75)
IQR <- Q3 - Q1

batas_bawah <- Q1 - 1.5 * IQR
batas_atas <- Q3 + 1.5 * IQR

data <- data %>%
  mutate(outlier_iqr = nilai < batas_bawah | nilai > batas_atas)
# Menampilkan data dengan status outlier berdasarkan IQR
print(data)
#>      id     nilai      z_score outlier_z outlier_iqr
#> 1     1  44.39524 -0.389888902     FALSE       FALSE
#> 2     2  47.69823 -0.234391178     FALSE       FALSE
#> 3     3  65.58708  0.607780249     FALSE       FALSE
#> 4     4  50.70508 -0.092834318     FALSE       FALSE
#> 5     5  51.29288 -0.065162186     FALSE       FALSE
#> 6     6  67.15065  0.681389823     FALSE       FALSE
#> 7     7  54.60916  0.090961823     FALSE       FALSE
#> 8     8  37.34939 -0.721593614     FALSE       FALSE
#> 9     9  43.13147 -0.449384746     FALSE       FALSE
#> 10   10  45.54338 -0.335836934     FALSE       FALSE
#> 11   11  62.24082  0.450244821     FALSE       FALSE
#> 12   12  53.59814  0.043364858     FALSE       FALSE
#> 13   13  54.00771  0.062646882     FALSE       FALSE
#> 14   14  51.10683 -0.073921055     FALSE       FALSE
#> 15   15  44.44159 -0.387707067     FALSE       FALSE
#> 16   16  67.86913  0.715214486     FALSE       FALSE
#> 17   17  54.97850  0.108349735     FALSE       FALSE
#> 18   18  30.33383 -1.051872020     FALSE       FALSE
#> 19   19  57.01356  0.204155991     FALSE       FALSE
#> 20   20  45.27209 -0.348608927     FALSE       FALSE
#> 21   21  39.32176 -0.628738155     FALSE       FALSE
#> 22   22  47.82025 -0.228646451     FALSE       FALSE
#> 23   23  39.73996 -0.609050491     FALSE       FALSE
#> 24   24  42.71109 -0.469175568     FALSE       FALSE
#> 25   25  43.74961 -0.420284155     FALSE       FALSE
#> 26   26  33.13307 -0.920089508     FALSE       FALSE
#> 27   27  58.37787  0.268385027     FALSE       FALSE
#> 28   28  51.53373 -0.053823273     FALSE       FALSE
#> 29   29  38.61863 -0.661840209     FALSE       FALSE
#> 30   30  62.53815  0.464242577     FALSE       FALSE
#> 31   31  54.26464  0.074742522     FALSE       FALSE
#> 32   32  47.04929 -0.264941964     FALSE       FALSE
#> 33   33  58.95126  0.295378894     FALSE       FALSE
#> 34   34  58.78133  0.287379320     FALSE       FALSE
#> 35   35  58.21581  0.260755586     FALSE       FALSE
#> 36   36  56.88640  0.198169721     FALSE       FALSE
#> 37   37  55.53918  0.134745032     FALSE       FALSE
#> 38   38  49.38088 -0.155175036     FALSE       FALSE
#> 39   39  46.94037 -0.270069312     FALSE       FALSE
#> 40   40  46.19529 -0.305146338     FALSE       FALSE
#> 41   41  43.05293 -0.453082311     FALSE       FALSE
#> 42   42  47.92083 -0.223911518     FALSE       FALSE
#> 43   43  37.34604 -0.721751380     FALSE       FALSE
#> 44   44  71.68956  0.895072560     FALSE       FALSE
#> 45   45  62.07962  0.442655944     FALSE       FALSE
#> 46   46  38.76891 -0.654765163     FALSE       FALSE
#> 47   47  45.97115 -0.315698320     FALSE       FALSE
#> 48   48  45.33345 -0.345720196     FALSE       FALSE
#> 49   49  57.79965  0.241163628     FALSE       FALSE
#> 50   50  49.16631 -0.165276728     FALSE       FALSE
#> 51   51  52.53319 -0.006770992     FALSE       FALSE
#> 52   52  49.71453 -0.139467487     FALSE       FALSE
#> 53   53  49.57130 -0.146210798     FALSE       FALSE
#> 54   54  63.68602  0.518282157     FALSE       FALSE
#> 55   55  47.74229 -0.232316685     FALSE       FALSE
#> 56   56  65.16471  0.587895586     FALSE       FALSE
#> 57   57  34.51247 -0.855149894     FALSE       FALSE
#> 58   58  55.84614  0.149196136     FALSE       FALSE
#> 59   59  51.23854 -0.067720164     FALSE       FALSE
#> 60   60  52.15942 -0.024367305     FALSE       FALSE
#> 61   61  53.79639  0.052698377     FALSE       FALSE
#> 62   62  44.97677 -0.362512019     FALSE       FALSE
#> 63   63  46.66793 -0.282895578     FALSE       FALSE
#> 64   64  39.81425 -0.605553036     FALSE       FALSE
#> 65   65  39.28209 -0.630605984     FALSE       FALSE
#> 66   66  53.03529  0.016866925     FALSE       FALSE
#> 67   67  54.48210  0.084979892     FALSE       FALSE
#> 68   68  50.53004 -0.101074926     FALSE       FALSE
#> 69   69  59.22267  0.308156710     FALSE       FALSE
#> 70   70  70.50085  0.839110354     FALSE       FALSE
#> 71   71  45.08969 -0.357195838     FALSE       FALSE
#> 72   72  26.90831 -1.213138474     FALSE       FALSE
#> 73   73  60.05739  0.347453203     FALSE       FALSE
#> 74   74  42.90799 -0.459905692     FALSE       FALSE
#> 75   75  43.11991 -0.449928857     FALSE       FALSE
#> 76   76  60.25571  0.356790108     FALSE       FALSE
#> 77   77  47.15227 -0.260093649     FALSE       FALSE
#> 78   78  37.79282 -0.700717576     FALSE       FALSE
#> 79   79  51.81303 -0.040674220     FALSE       FALSE
#> 80   80  48.61109 -0.191415507     FALSE       FALSE
#> 81   81  50.05764 -0.123314587     FALSE       FALSE
#> 82   82  53.85280  0.055354008     FALSE       FALSE
#> 83   83  46.29340 -0.300527531     FALSE       FALSE
#> 84   84  56.44377  0.177331259     FALSE       FALSE
#> 85   85  47.79513 -0.229828884     FALSE       FALSE
#> 86   86  53.31782  0.030168021     FALSE       FALSE
#> 87   87  60.96839  0.390341480     FALSE       FALSE
#> 88   88  54.35181  0.078846437     FALSE       FALSE
#> 89   89  46.74068 -0.279470279     FALSE       FALSE
#> 90   90  61.48808  0.414807253     FALSE       FALSE
#> 91   91  59.93504  0.341693368     FALSE       FALSE
#> 92   92  55.48397  0.132146000     FALSE       FALSE
#> 93   93  52.38732 -0.013638154     FALSE       FALSE
#> 94   94  43.72094 -0.421633790     FALSE       FALSE
#> 95   95  63.60652  0.514539535     FALSE       FALSE
#> 96   96  43.99740 -0.408618380     FALSE       FALSE
#> 97   97  71.87333  0.903724094     FALSE       FALSE
#> 98   98 150.00000  4.581770457      TRUE        TRUE
#> 99   99 -20.00000 -3.421487344      TRUE        TRUE
#> 100 100 200.00000  6.935669811      TRUE        TRUE
# Normalisasi Data menggunakan Min-Max Normalization
data <- data %>%
  mutate(nilai_normalized = (nilai - min(nilai)) / (max(nilai) - min(nilai)))
# Menampilkan data dengan nilai yang dinormalisasi
print(data)
#>      id     nilai      z_score outlier_z outlier_iqr nilai_normalized
#> 1     1  44.39524 -0.389888902     FALSE       FALSE        0.2927057
#> 2     2  47.69823 -0.234391178     FALSE       FALSE        0.3077192
#> 3     3  65.58708  0.607780249     FALSE       FALSE        0.3890322
#> 4     4  50.70508 -0.092834318     FALSE       FALSE        0.3213867
#> 5     5  51.29288 -0.065162186     FALSE       FALSE        0.3240585
#> 6     6  67.15065  0.681389823     FALSE       FALSE        0.3961393
#> 7     7  54.60916  0.090961823     FALSE       FALSE        0.3391326
#> 8     8  37.34939 -0.721593614     FALSE       FALSE        0.2606790
#> 9     9  43.13147 -0.449384746     FALSE       FALSE        0.2869612
#> 10   10  45.54338 -0.335836934     FALSE       FALSE        0.2979245
#> 11   11  62.24082  0.450244821     FALSE       FALSE        0.3738219
#> 12   12  53.59814  0.043364858     FALSE       FALSE        0.3345370
#> 13   13  54.00771  0.062646882     FALSE       FALSE        0.3363987
#> 14   14  51.10683 -0.073921055     FALSE       FALSE        0.3232129
#> 15   15  44.44159 -0.387707067     FALSE       FALSE        0.2929163
#> 16   16  67.86913  0.715214486     FALSE       FALSE        0.3994051
#> 17   17  54.97850  0.108349735     FALSE       FALSE        0.3408114
#> 18   18  30.33383 -1.051872020     FALSE       FALSE        0.2287901
#> 19   19  57.01356  0.204155991     FALSE       FALSE        0.3500616
#> 20   20  45.27209 -0.348608927     FALSE       FALSE        0.2966913
#> 21   21  39.32176 -0.628738155     FALSE       FALSE        0.2696444
#> 22   22  47.82025 -0.228646451     FALSE       FALSE        0.3082739
#> 23   23  39.73996 -0.609050491     FALSE       FALSE        0.2715453
#> 24   24  42.71109 -0.469175568     FALSE       FALSE        0.2850504
#> 25   25  43.74961 -0.420284155     FALSE       FALSE        0.2897709
#> 26   26  33.13307 -0.920089508     FALSE       FALSE        0.2415139
#> 27   27  58.37787  0.268385027     FALSE       FALSE        0.3562630
#> 28   28  51.53373 -0.053823273     FALSE       FALSE        0.3251533
#> 29   29  38.61863 -0.661840209     FALSE       FALSE        0.2664483
#> 30   30  62.53815  0.464242577     FALSE       FALSE        0.3751734
#> 31   31  54.26464  0.074742522     FALSE       FALSE        0.3375666
#> 32   32  47.04929 -0.264941964     FALSE       FALSE        0.3047695
#> 33   33  58.95126  0.295378894     FALSE       FALSE        0.3588693
#> 34   34  58.78133  0.287379320     FALSE       FALSE        0.3580970
#> 35   35  58.21581  0.260755586     FALSE       FALSE        0.3555264
#> 36   36  56.88640  0.198169721     FALSE       FALSE        0.3494836
#> 37   37  55.53918  0.134745032     FALSE       FALSE        0.3433599
#> 38   38  49.38088 -0.155175036     FALSE       FALSE        0.3153676
#> 39   39  46.94037 -0.270069312     FALSE       FALSE        0.3042744
#> 40   40  46.19529 -0.305146338     FALSE       FALSE        0.3008877
#> 41   41  43.05293 -0.453082311     FALSE       FALSE        0.2866042
#> 42   42  47.92083 -0.223911518     FALSE       FALSE        0.3087310
#> 43   43  37.34604 -0.721751380     FALSE       FALSE        0.2606638
#> 44   44  71.68956  0.895072560     FALSE       FALSE        0.4167707
#> 45   45  62.07962  0.442655944     FALSE       FALSE        0.3730892
#> 46   46  38.76891 -0.654765163     FALSE       FALSE        0.2671314
#> 47   47  45.97115 -0.315698320     FALSE       FALSE        0.2998689
#> 48   48  45.33345 -0.345720196     FALSE       FALSE        0.2969702
#> 49   49  57.79965  0.241163628     FALSE       FALSE        0.3536348
#> 50   50  49.16631 -0.165276728     FALSE       FALSE        0.3143923
#> 51   51  52.53319 -0.006770992     FALSE       FALSE        0.3296963
#> 52   52  49.71453 -0.139467487     FALSE       FALSE        0.3168842
#> 53   53  49.57130 -0.146210798     FALSE       FALSE        0.3162332
#> 54   54  63.68602  0.518282157     FALSE       FALSE        0.3803910
#> 55   55  47.74229 -0.232316685     FALSE       FALSE        0.3079195
#> 56   56  65.16471  0.587895586     FALSE       FALSE        0.3871123
#> 57   57  34.51247 -0.855149894     FALSE       FALSE        0.2477840
#> 58   58  55.84614  0.149196136     FALSE       FALSE        0.3447552
#> 59   59  51.23854 -0.067720164     FALSE       FALSE        0.3238116
#> 60   60  52.15942 -0.024367305     FALSE       FALSE        0.3279973
#> 61   61  53.79639  0.052698377     FALSE       FALSE        0.3354382
#> 62   62  44.97677 -0.362512019     FALSE       FALSE        0.2953489
#> 63   63  46.66793 -0.282895578     FALSE       FALSE        0.3030360
#> 64   64  39.81425 -0.605553036     FALSE       FALSE        0.2718829
#> 65   65  39.28209 -0.630605984     FALSE       FALSE        0.2694640
#> 66   66  53.03529  0.016866925     FALSE       FALSE        0.3319786
#> 67   67  54.48210  0.084979892     FALSE       FALSE        0.3385550
#> 68   68  50.53004 -0.101074926     FALSE       FALSE        0.3205911
#> 69   69  59.22267  0.308156710     FALSE       FALSE        0.3601031
#> 70   70  70.50085  0.839110354     FALSE       FALSE        0.4113675
#> 71   71  45.08969 -0.357195838     FALSE       FALSE        0.2958622
#> 72   72  26.90831 -1.213138474     FALSE       FALSE        0.2132196
#> 73   73  60.05739  0.347453203     FALSE       FALSE        0.3638972
#> 74   74  42.90799 -0.459905692     FALSE       FALSE        0.2859454
#> 75   75  43.11991 -0.449928857     FALSE       FALSE        0.2869087
#> 76   76  60.25571  0.356790108     FALSE       FALSE        0.3647987
#> 77   77  47.15227 -0.260093649     FALSE       FALSE        0.3052376
#> 78   78  37.79282 -0.700717576     FALSE       FALSE        0.2626946
#> 79   79  51.81303 -0.040674220     FALSE       FALSE        0.3264229
#> 80   80  48.61109 -0.191415507     FALSE       FALSE        0.3118686
#> 81   81  50.05764 -0.123314587     FALSE       FALSE        0.3184438
#> 82   82  53.85280  0.055354008     FALSE       FALSE        0.3356946
#> 83   83  46.29340 -0.300527531     FALSE       FALSE        0.3013336
#> 84   84  56.44377  0.177331259     FALSE       FALSE        0.3474717
#> 85   85  47.79513 -0.229828884     FALSE       FALSE        0.3081597
#> 86   86  53.31782  0.030168021     FALSE       FALSE        0.3332628
#> 87   87  60.96839  0.390341480     FALSE       FALSE        0.3680381
#> 88   88  54.35181  0.078846437     FALSE       FALSE        0.3379628
#> 89   89  46.74068 -0.279470279     FALSE       FALSE        0.3033667
#> 90   90  61.48808  0.414807253     FALSE       FALSE        0.3704003
#> 91   91  59.93504  0.341693368     FALSE       FALSE        0.3633411
#> 92   92  55.48397  0.132146000     FALSE       FALSE        0.3431090
#> 93   93  52.38732 -0.013638154     FALSE       FALSE        0.3290333
#> 94   94  43.72094 -0.421633790     FALSE       FALSE        0.2896406
#> 95   95  63.60652  0.514539535     FALSE       FALSE        0.3800297
#> 96   96  43.99740 -0.408618380     FALSE       FALSE        0.2908973
#> 97   97  71.87333  0.903724094     FALSE       FALSE        0.4176060
#> 98   98 150.00000  4.581770457      TRUE        TRUE        0.7727273
#> 99   99 -20.00000 -3.421487344      TRUE        TRUE        0.0000000
#> 100 100 200.00000  6.935669811      TRUE        TRUE        1.0000000
# Normalisasi Data menggunakan Z-Score Normalization
data <- data %>%
  mutate(nilai_z_normalized = (nilai - mean(nilai)) / sd(nilai))
# Menampilkan data dengan nilai yang dinormalisasi menggunakan Z-Score
print(data)
#>      id     nilai      z_score outlier_z outlier_iqr nilai_normalized
#> 1     1  44.39524 -0.389888902     FALSE       FALSE        0.2927057
#> 2     2  47.69823 -0.234391178     FALSE       FALSE        0.3077192
#> 3     3  65.58708  0.607780249     FALSE       FALSE        0.3890322
#> 4     4  50.70508 -0.092834318     FALSE       FALSE        0.3213867
#> 5     5  51.29288 -0.065162186     FALSE       FALSE        0.3240585
#> 6     6  67.15065  0.681389823     FALSE       FALSE        0.3961393
#> 7     7  54.60916  0.090961823     FALSE       FALSE        0.3391326
#> 8     8  37.34939 -0.721593614     FALSE       FALSE        0.2606790
#> 9     9  43.13147 -0.449384746     FALSE       FALSE        0.2869612
#> 10   10  45.54338 -0.335836934     FALSE       FALSE        0.2979245
#> 11   11  62.24082  0.450244821     FALSE       FALSE        0.3738219
#> 12   12  53.59814  0.043364858     FALSE       FALSE        0.3345370
#> 13   13  54.00771  0.062646882     FALSE       FALSE        0.3363987
#> 14   14  51.10683 -0.073921055     FALSE       FALSE        0.3232129
#> 15   15  44.44159 -0.387707067     FALSE       FALSE        0.2929163
#> 16   16  67.86913  0.715214486     FALSE       FALSE        0.3994051
#> 17   17  54.97850  0.108349735     FALSE       FALSE        0.3408114
#> 18   18  30.33383 -1.051872020     FALSE       FALSE        0.2287901
#> 19   19  57.01356  0.204155991     FALSE       FALSE        0.3500616
#> 20   20  45.27209 -0.348608927     FALSE       FALSE        0.2966913
#> 21   21  39.32176 -0.628738155     FALSE       FALSE        0.2696444
#> 22   22  47.82025 -0.228646451     FALSE       FALSE        0.3082739
#> 23   23  39.73996 -0.609050491     FALSE       FALSE        0.2715453
#> 24   24  42.71109 -0.469175568     FALSE       FALSE        0.2850504
#> 25   25  43.74961 -0.420284155     FALSE       FALSE        0.2897709
#> 26   26  33.13307 -0.920089508     FALSE       FALSE        0.2415139
#> 27   27  58.37787  0.268385027     FALSE       FALSE        0.3562630
#> 28   28  51.53373 -0.053823273     FALSE       FALSE        0.3251533
#> 29   29  38.61863 -0.661840209     FALSE       FALSE        0.2664483
#> 30   30  62.53815  0.464242577     FALSE       FALSE        0.3751734
#> 31   31  54.26464  0.074742522     FALSE       FALSE        0.3375666
#> 32   32  47.04929 -0.264941964     FALSE       FALSE        0.3047695
#> 33   33  58.95126  0.295378894     FALSE       FALSE        0.3588693
#> 34   34  58.78133  0.287379320     FALSE       FALSE        0.3580970
#> 35   35  58.21581  0.260755586     FALSE       FALSE        0.3555264
#> 36   36  56.88640  0.198169721     FALSE       FALSE        0.3494836
#> 37   37  55.53918  0.134745032     FALSE       FALSE        0.3433599
#> 38   38  49.38088 -0.155175036     FALSE       FALSE        0.3153676
#> 39   39  46.94037 -0.270069312     FALSE       FALSE        0.3042744
#> 40   40  46.19529 -0.305146338     FALSE       FALSE        0.3008877
#> 41   41  43.05293 -0.453082311     FALSE       FALSE        0.2866042
#> 42   42  47.92083 -0.223911518     FALSE       FALSE        0.3087310
#> 43   43  37.34604 -0.721751380     FALSE       FALSE        0.2606638
#> 44   44  71.68956  0.895072560     FALSE       FALSE        0.4167707
#> 45   45  62.07962  0.442655944     FALSE       FALSE        0.3730892
#> 46   46  38.76891 -0.654765163     FALSE       FALSE        0.2671314
#> 47   47  45.97115 -0.315698320     FALSE       FALSE        0.2998689
#> 48   48  45.33345 -0.345720196     FALSE       FALSE        0.2969702
#> 49   49  57.79965  0.241163628     FALSE       FALSE        0.3536348
#> 50   50  49.16631 -0.165276728     FALSE       FALSE        0.3143923
#> 51   51  52.53319 -0.006770992     FALSE       FALSE        0.3296963
#> 52   52  49.71453 -0.139467487     FALSE       FALSE        0.3168842
#> 53   53  49.57130 -0.146210798     FALSE       FALSE        0.3162332
#> 54   54  63.68602  0.518282157     FALSE       FALSE        0.3803910
#> 55   55  47.74229 -0.232316685     FALSE       FALSE        0.3079195
#> 56   56  65.16471  0.587895586     FALSE       FALSE        0.3871123
#> 57   57  34.51247 -0.855149894     FALSE       FALSE        0.2477840
#> 58   58  55.84614  0.149196136     FALSE       FALSE        0.3447552
#> 59   59  51.23854 -0.067720164     FALSE       FALSE        0.3238116
#> 60   60  52.15942 -0.024367305     FALSE       FALSE        0.3279973
#> 61   61  53.79639  0.052698377     FALSE       FALSE        0.3354382
#> 62   62  44.97677 -0.362512019     FALSE       FALSE        0.2953489
#> 63   63  46.66793 -0.282895578     FALSE       FALSE        0.3030360
#> 64   64  39.81425 -0.605553036     FALSE       FALSE        0.2718829
#> 65   65  39.28209 -0.630605984     FALSE       FALSE        0.2694640
#> 66   66  53.03529  0.016866925     FALSE       FALSE        0.3319786
#> 67   67  54.48210  0.084979892     FALSE       FALSE        0.3385550
#> 68   68  50.53004 -0.101074926     FALSE       FALSE        0.3205911
#> 69   69  59.22267  0.308156710     FALSE       FALSE        0.3601031
#> 70   70  70.50085  0.839110354     FALSE       FALSE        0.4113675
#> 71   71  45.08969 -0.357195838     FALSE       FALSE        0.2958622
#> 72   72  26.90831 -1.213138474     FALSE       FALSE        0.2132196
#> 73   73  60.05739  0.347453203     FALSE       FALSE        0.3638972
#> 74   74  42.90799 -0.459905692     FALSE       FALSE        0.2859454
#> 75   75  43.11991 -0.449928857     FALSE       FALSE        0.2869087
#> 76   76  60.25571  0.356790108     FALSE       FALSE        0.3647987
#> 77   77  47.15227 -0.260093649     FALSE       FALSE        0.3052376
#> 78   78  37.79282 -0.700717576     FALSE       FALSE        0.2626946
#> 79   79  51.81303 -0.040674220     FALSE       FALSE        0.3264229
#> 80   80  48.61109 -0.191415507     FALSE       FALSE        0.3118686
#> 81   81  50.05764 -0.123314587     FALSE       FALSE        0.3184438
#> 82   82  53.85280  0.055354008     FALSE       FALSE        0.3356946
#> 83   83  46.29340 -0.300527531     FALSE       FALSE        0.3013336
#> 84   84  56.44377  0.177331259     FALSE       FALSE        0.3474717
#> 85   85  47.79513 -0.229828884     FALSE       FALSE        0.3081597
#> 86   86  53.31782  0.030168021     FALSE       FALSE        0.3332628
#> 87   87  60.96839  0.390341480     FALSE       FALSE        0.3680381
#> 88   88  54.35181  0.078846437     FALSE       FALSE        0.3379628
#> 89   89  46.74068 -0.279470279     FALSE       FALSE        0.3033667
#> 90   90  61.48808  0.414807253     FALSE       FALSE        0.3704003
#> 91   91  59.93504  0.341693368     FALSE       FALSE        0.3633411
#> 92   92  55.48397  0.132146000     FALSE       FALSE        0.3431090
#> 93   93  52.38732 -0.013638154     FALSE       FALSE        0.3290333
#> 94   94  43.72094 -0.421633790     FALSE       FALSE        0.2896406
#> 95   95  63.60652  0.514539535     FALSE       FALSE        0.3800297
#> 96   96  43.99740 -0.408618380     FALSE       FALSE        0.2908973
#> 97   97  71.87333  0.903724094     FALSE       FALSE        0.4176060
#> 98   98 150.00000  4.581770457      TRUE        TRUE        0.7727273
#> 99   99 -20.00000 -3.421487344      TRUE        TRUE        0.0000000
#> 100 100 200.00000  6.935669811      TRUE        TRUE        1.0000000
#>     nilai_z_normalized
#> 1         -0.389888902
#> 2         -0.234391178
#> 3          0.607780249
#> 4         -0.092834318
#> 5         -0.065162186
#> 6          0.681389823
#> 7          0.090961823
#> 8         -0.721593614
#> 9         -0.449384746
#> 10        -0.335836934
#> 11         0.450244821
#> 12         0.043364858
#> 13         0.062646882
#> 14        -0.073921055
#> 15        -0.387707067
#> 16         0.715214486
#> 17         0.108349735
#> 18        -1.051872020
#> 19         0.204155991
#> 20        -0.348608927
#> 21        -0.628738155
#> 22        -0.228646451
#> 23        -0.609050491
#> 24        -0.469175568
#> 25        -0.420284155
#> 26        -0.920089508
#> 27         0.268385027
#> 28        -0.053823273
#> 29        -0.661840209
#> 30         0.464242577
#> 31         0.074742522
#> 32        -0.264941964
#> 33         0.295378894
#> 34         0.287379320
#> 35         0.260755586
#> 36         0.198169721
#> 37         0.134745032
#> 38        -0.155175036
#> 39        -0.270069312
#> 40        -0.305146338
#> 41        -0.453082311
#> 42        -0.223911518
#> 43        -0.721751380
#> 44         0.895072560
#> 45         0.442655944
#> 46        -0.654765163
#> 47        -0.315698320
#> 48        -0.345720196
#> 49         0.241163628
#> 50        -0.165276728
#> 51        -0.006770992
#> 52        -0.139467487
#> 53        -0.146210798
#> 54         0.518282157
#> 55        -0.232316685
#> 56         0.587895586
#> 57        -0.855149894
#> 58         0.149196136
#> 59        -0.067720164
#> 60        -0.024367305
#> 61         0.052698377
#> 62        -0.362512019
#> 63        -0.282895578
#> 64        -0.605553036
#> 65        -0.630605984
#> 66         0.016866925
#> 67         0.084979892
#> 68        -0.101074926
#> 69         0.308156710
#> 70         0.839110354
#> 71        -0.357195838
#> 72        -1.213138474
#> 73         0.347453203
#> 74        -0.459905692
#> 75        -0.449928857
#> 76         0.356790108
#> 77        -0.260093649
#> 78        -0.700717576
#> 79        -0.040674220
#> 80        -0.191415507
#> 81        -0.123314587
#> 82         0.055354008
#> 83        -0.300527531
#> 84         0.177331259
#> 85        -0.229828884
#> 86         0.030168021
#> 87         0.390341480
#> 88         0.078846437
#> 89        -0.279470279
#> 90         0.414807253
#> 91         0.341693368
#> 92         0.132146000
#> 93        -0.013638154
#> 94        -0.421633790
#> 95         0.514539535
#> 96        -0.408618380
#> 97         0.903724094
#> 98         4.581770457
#> 99        -3.421487344
#> 100        6.935669811
# Visualisasi data setelah normalisasi
ggplot(data, aes(x = id)) +
  geom_line(aes(y = nilai_normalized, color = "Min-Max Normalization")) +
  geom_line(aes(y = nilai_z_normalized, color = "Z-Score Normalization")) +
  ggtitle("Visualisasi Data Setelah Normalisasi") +
  theme_minimal() +
  scale_color_manual(values = c("blue", "red")) +
  labs(color = "Metode Normalisasi")